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magnetic fields in galaxies/galaxy clusters:
from amplification of (much weaker) seed fields

initial seed fields
o created in the early universe (e.g. during phase transitions)
@ or created by early starburst galaxies/AGNs
o or created by recent AGNs (and concentrated in filaments)
only weak upper limits exist from Faraday RM
alternative way — studies of TeV V-rays:

o delayed “echoes” of y-ray flares (Plaga 1995)
o formation of y-ray “halos” around point-like sources
(Aharonian, Coppi & Volk 1994)

new: limits on IGMF from non-observation of GeV y-rays from
TeV blazars (Neronov & Vovk 2010; Tavecchio et al. 2010)
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Limits on IGMF from GeV-TeV observations of blazars

@ limits on the strength of IGMF from GeV-silent TeV blazars
(Neronov & Vovk 2010; Tavecchio et al. 2010)

@ TeV y-rays pair-produce on EBL photons = e/m cascades
@ results in significant fluxes of secondary y in the GeV range

o stationary sources at large z, with hard TeV spectrum and low
intrinsic GeV spectrum (e.g. 1ES 0229+200):
cascade Yy-s should be observable with Fermi-LAT

@ non-observation of GeV y-rays = cascade deflections by IGMF
@ = allows to get limits on the IGMF strength: B> 1071° G

@ open questions:
o potential source variability?

o impact of IGMF spacial structure
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MC approach: EIMag code

@ e/m cascade on background photons:

@ pair production: yy, — et e

o ICS: ety — ety

@ synchrotron energy loss for €*
@ (141)-dimensional treatment

@ production angles neglected

s deflection in IGMF accounted for (small angle approximation)
@ weighted sampling applied

o produced particle kept with probability 2" (0 < oy < 1)

@ each particle is “representative” — has a weight factor w

o produced particle weight: wy = Wp/zgW

o highly efficient: ~ 10° cascades/s over cosmological distances
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Angular deflections in magnetic fields

@ simple for 2-step process: y — et —y

@ [B=7D0gef — defl. angle

@ 3 =Jops— obs. angle

o fB=a+3
P B o = Fops™ Faefi X/L
@ NB: though (x) = lyy, (m.f.p.), fluctuations are very important

@ Yy produced close to the source = smaller Dgpg
o time delay: AT ~ 2x/c(1—x/L) %3
@ same importance of fluctuations of X as for dgps

s additionally: fluctuations of Axe ((AXe) = lcool)
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@ similarly for multi-step cascades: y—€* — ... et -y

O o B=9gen — defl. angle

@ 3 =Jops— obs. angle
o B=a+3

0 = Tops™ Fgefi X/L

@ deflection angle — within small angle approximation:
o Ygei=P= ziN:lB% (N = numb. of €* in the cascade branch)

o deflection of the last € in the cascade — most important
(largest X, smallest energy: 9qefi ~ lcool/RL 0 Eg?)
o Bg ~ AX, Ax; — pass of i-th € from its creation till y emission
) If AX| >> Lcoh = Bei ~ \/Axi
I
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Case of 1ES 0229+200: assumptions

@ same assumptions on the source as in Tavecchio et al. 2010

o injection spectrum F 0 E~2/3 with cutoff at Egax= 20 TeV
o low Lorentz factor: ' =10 = Ojet = 6°
@ jet pointing towards the observer
@ Fermi-LAT upper limits on GeV y-s from Tavecchio et al. 2010

@ account for y-rays within the PSF of the Fermi-LAT
(D95~ 1.68°(E/GeV) %77+ 0.2°exp(—10 GeV/E))

o EBL "best-fit" model from Kneiske & Dole 2010
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weaker limits for
Emax= 100 TeV:
‘plato’-like spectra

® Bowr 2 101° G

@ results — consistent with Tavecchio et al. 2010

o different spectral shape

o e.g. spectral 'shoulder’ in the TeV range for Emax= 20 TeV
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Case of structured magnetic field

@ what if the field is concentrated in filaments
while being absent/very weak in voids?

@ check with “top-hat” profile, with D = 10 Mpc between peaks

o if the field in “filaments” sufficiently strong = 2 possible cases
(since D < lyy, lcoot < (1—1)D)

@ with probability (1—f),
Y E Y o et produced in a “void”

oW

@ = final y goes straight
@ = observed flux = (1—f) x flux(B=0)

@ multi-step cascade: observed flux ~ (1—f)N x flux(B = 0)
(all N electrons in a cascade branch propagate in voids)

@ = lower limit on the “filling factor” — from higher Enyax
I
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similar results when using realistic B-profiles from cosmological
MHD simulations (Dolag et al., arXive:1009.1782)
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@ Dermer et al. 2010: time-variability of blazars may
significantly weaken the limits on IGMF strength

o case of 1ES 02294200 reanalyzed
o analytic treatment of time delays applied

o Bemr 2 1018 G obtained
@ reminding: At [ Xyﬁgeﬂ
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@ similar results obtained by Taylor et al. 2011
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limits on IGMF “filling factor”: time-independence

o reminding: “filling factor” related to undeflected y-ray flux:
observed flux = (1—f) x flux(B = 0)

@ = independent on the life time of the source
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@ variability of the source impacts the limits on the IGMF
strength, not on the IGMF spacial distribution
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@ for small coherence length of the field the limit on the IGMF

strength improves as Bmin O LC_Olh2 (Neronov & Semikoz 2009)
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@ for small coherence length of the field the limit on the IGMF

strength improves as Bmin O LC_Olh2 (Neronov & Semikoz 2009)
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@ mean travel distance (AXe) of a parent €-
is defined by the cooling length
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@ however, the distribution of AXe
has pronounced tails towards Axe ~ 1 kpc
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